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In this note we give a proof of a version of Atkinson’s Theorem for Fredholm operators
on Banach spaces.

Recall that if V,W are Banach spaces, a bounded operator T : V → W is called Fredholm
if kerT and cokT = W/ imT are finite dimensional, and imT is closed. In fact, cokT finite-
dimensional implies that imT is closed (see Lemma 2.1). If V = W = H is a Hilbert space,
then T : H → H is Fredholm if kerT is closed, imT⊥ is closed, and imT is finite-dimensional.
None of these conditions is redundant since we need to assume that imT is closed to have
an isomorphism cokT → imT⊥.

We will also denote by U ′ the continuous dual space to the normed vector space U .
We recall Atkinson’s Theorem which says:

Theorem 1.1 (Atkinson). A bounded operator on a Hilbert space T : H → H is Fredholm
if and only if there exist R, S such that I −RT and I − TS are compact.

Remark 1.2. We remark that we can always assume R = S in the above. Indeed, if RT =
I −K1 and TS = I −K2, then notice that

S −K1S = (I −K1)S = (RT )S = R(TS) = R(I −K2) = R−RK2,

and so S −R = K3 is compact, and hence

ST = RT +K3T = I − I1 +K3T,

where the sum of the latter two operators is compact, and similarly for TR.

We give a quick proof.

Proof. Suppose R, S exist as above. If kerT were infinite-dimensional, we could extract
an infinite orthonormal sequence vn ∈ kerT . Then RTvn = 0 = vn − K1vn. Passing to a
subsequence of K1vn, we see that vnk

is convergent, which contradicts orthogonality. Observe
that imT⊥ = kerT ∗, and that S∗T ∗ = (TS)∗ = I−K∗2 . K∗2 is compact since it is also the limit
of finite-rank operators (an alternative, more general, proof is given below in Lemma 2.3).
Thus we apply the previous argument to T ∗ to conclude that imT⊥ is finite-dimensional.

Next we show that imT is closed. Suppose vn = Twn → v. Without loss of generality,
we may assume that wn ∈ kerT⊥. Then Rvn = RTwn = wn −K1wn → Rv. First assume
supn‖wn‖ = ∞. Then passing to a subsequence, we may assume Twn/‖wn‖ → 0, and
hence RTwn/‖wn‖ = wn/‖wn‖ − K1wn/‖wn‖ → 0. Since K1 is compact, passing to a
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futher subsequence, we obtain that wn/‖wn‖ is convergent to some u, with ‖u‖ = 1. Thus
Tu = limTwn/‖wn‖ = 0. But u ∈ kerT⊥, and so u = 0, too, a contradiction. Thus the wn
are unifomrly bounded. Then wn − K1wn = Rvn → Rv, and so passing to a subsequence
and using that K1 is compact, wn → w, and Tw = limTwn = v, and so v ∈ imT .

Conversely, if T is Fredholm, then T |kerT⊥ : kerT⊥ → imT is invertible. Let R be its
inverse, which is bounded by the open mapping theorem since imT is closed and hence a
Hilbert space. Since imT is closed, H = imT ⊕ imT⊥, and thus we may extend R to a
map on all of H by setting R|imT⊥ ≡ 0. Considering the cases v ∈ kerT and v ∈ kerT⊥

separately, it is clear that RTv = I−PkerT . Here, PV denotes the projection onto a subspace
V , which is finite rank (and hence compact) if V is finite-dimensional, as is in the given case.
Similarly, consider v ∈ imT and v ∈ imT⊥ seperately, TR = I −PimT⊥ . This completes the
proof.

We now state the generalization to Banach spaces.

Theorem 1.3 (Banach Space Atkinson). A bounded operator between Banach spaces T :
V → W is Fredholm if and only if there exist R, S such that I−RT and I−TS are compact.

For Banach spaces, an operator is compact if the image of the unit ball is precompact,
i.e. every bounded sequence gets mapped to one which a convergent subsequence.

Proof. The idea is to mimic the proof for Hilbert spaces. We will mention the subsitutes to
constructions used in Hilbert spaces and prove them as lemmas after the proof.

First suppose that I − RT and I − TS are compact. To prove that kerT is finite-
dimensional we need only find a substitute for orthonormality. This is given by the so-called
Riesz lemma (Lemma 2.4), a corollary of which asserts that if kerT is infinite-dimensional,
there exists a sequence vn with ‖vn‖ = 1 and ‖vn − vm‖ ≥ 1/2 for any n 6= m. In particular
no subsequence of vn is convergent, and the argument above goes through.

We now need to prove that cokT is finite-dimensional, which also implies that imT is
closed by Lemma 2.1. By Lemma 2.6, it suffices to show that (cokT )′ is finite-dimensional.
Denote (suggestively) by imT⊥ ⊆ W ′ the set of all functionals vanishing on imT . Ignoring
the topology for now, we should have an isomorphism imT⊥ ↔ (cokT )′, since any functional
vanishing on imT induces one on cokT and vice-versa. Lemma 2.8 asserts that this is in
fact an isometry of normed spaces (with the operator nom).

So we need to prove that imT⊥ is finite-dimensional. We need a substitute for adjoints
on Hilbert spaces. Fortunately, these exist: if A : X → Y , we may define its adjoint
A∗ : Y ′ → X ′ by A∗(ϕ) = ϕ◦A. It is easy to check that A∗ is bounded if A is. It is also clear
that imT⊥ = kerT ∗, that I∗ = I and that (AB)∗ = B∗A∗ if B : Z → X and A : Y → Y .
What is slightly harder to check is that if K : X → Y is compact, then K∗ : Y ′ → X ′ is
compact. This is the content of Lemma 2.3.

With this, we observe as in the case for Hilbert spaces that T ∗ satisfies the hypotheses
of Atkinson’s theorem, and so kerT ∗ = imT⊥ ∼= cokT is finite-dimensional.

To prove the converse, we need a substitute for orthogonal complements. Unfortunately
these don’t exist generically for even closed subspaces of Banach spaces, but they do for the
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cases that we need. Lemma 2.9 provides for this. Given this, we may write V = kerT +X,
where X ∩ kerT = 0, X is closed, and W = imT + Y , where Y ∩ imT = 0 and Y is
finite-dimensional and closed, and furthermore the projections onto each summand (which
are well-defined because each v ∈ V and w ∈ W decomposes uniquely) are bounded. With
this set up, the proof of the converse for Hilbert spaces goes through nearly verbatim.

2 Lemmas
We now prove the various lemmas used in the proof.

Lemma 2.1. Suppose V,W are Banach spaces, and T : V → W is bounded. If dim cokT <
∞, then imT is closed.

Proof. Quotienting out V by kerT , and replacing T by the map on the quotient space (which
is still bounded by Lemma 2.8) does not change imT , but now we may consider T to be
injective.

Pick a basis {wi + imT} of cokT = W/ imT . Rescaling, we may assume that ‖wi‖ = 1.
Since cokT ∼= Cd for some d < ∞, putting ‖

∑
ai(wi + imT )‖′ = sup |ai| gives a norm on

cokT , which is equivalent to the quotient norm on cokT . Define a norm on Cd ⊕ V by

‖(x, v)‖ = sup
i
|xi|+ ‖u‖.

Notice that this norm makes Cd ⊕ V into a Banach space since both Cd and V are, and
convergence with respect to the norm on Cd ⊕ V is just convergence with respect both
convergence in Cd and V .

We define a map
Cd ⊕ V → W

by
(a1, . . . , ad, u) 7→ a1w1 + · · ·+ adwd + Tv.

We will show that this map is a bounded linear bijection, and hence an isomorphism by the
open mapping theorem. Since V is certainly a closed subspace of Cd ⊕ V , its image under
the isomorphism, which is precisely imT , is closed in W , which is what we need to show.

This map is clearly linear. It is also injective since a1w1 + · · · adwd + Tv = 0 means that
a1w1 + · · · adwd ∈ imT , which means that

a1(w1 + imT ) + · · · ad(wd + imT ) = 0

which means that all ai = 0. We can thus conclude that Tv = 0, which means that v = 0.
It is also surjective since if w ∈ W , then

w + imT = a1(w1 + U) + · · · ad(wd + U)
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for some ai, in which case we may set

w′ = w − (a1w1 + · · · adwd) ∈ imT,

and hence w′ = Tv for some v ∈ V .
Lastly, we show boundedness. This is easy since

‖a1w1 + · · · adwd + Tv‖ ≤ d sup |ai|+ ‖Tv‖ ≤ (d+ ‖T‖)‖(a1, . . . , ad, v)‖.

Remark 2.2. It may seem as though considering T is redundant. However, if U ⊆ V is a
subspace of a Banach space, and V/U is finite-dimensional, then it’s not necessarily true
that U is closed. Indeed, consider `2(C). Extend any orthonormal basis to a vector space
basis by adding on a non-empty (in fact uncountable) collection of vectors {vα : α ∈ A}. Let
U be the subspace spanned by all the orthonormal basis vectors and all but one of the vα.
Then dim `2(C)/U = 1, but U is dense in `2(C), and thus is in particular not closed.

Lemma 2.3. Suppose V,W are Banach spaces and K : V → W is compact. Then K∗ :
W ′ → V ′ is compact as well.

Proof. Suppose ϕn ∈ W ′ are uniformly bounded in the operator norm. Then by definition
K∗(ϕn) = ϕn ◦K, and so we need to show that ϕn ◦K has a uniformly Cauchy subsequence.

By compactness of K, L = K(B(0, 1)) is compact in W . Since the ϕn are uniformly
bounded in the operator norm and are linear, they are equicontinuous. In particular by
Arzela-Ascoli, and passing to a subsequence without changing notation, we may assume
that ϕn|L are uniformly Cauchy, i.e. for all ε > 0 if m,n are large enough, then for all y ∈ L,

|ϕn(y)− ϕm(y)| < ε.

This means that for all x ∈ V , K(x/|x|) ∈ L and so

|ϕn(K(x))− ϕm(K(x))| < |x|ε,

i.e. the family of functionals ϕn ◦ K are Cauchy in the operator norm, which is what we
needed to show.

Lemma 2.4 (Riesz). Suppose V is a Banach space and U ( V is a closed proper subspace.
For v ∈ V set ‖v + U‖ = infu∈U‖v − u‖. Then for all ε > 0 there exists v ∈ V with ‖v‖ = 1
and ‖v + U‖ ≥ 1− ε.

As a corollary we get the substitute for orthonormality

Corollary 2.5. If V is an infinite-dimensional Banach space, then there exists a sequence
in vn with ‖vn‖ = 1 and ‖vn − vm‖ ≥ 1/2 whenever v 6= m.
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Proof of Lemma 2.4. We try the only thing we can. We know since U is closed that there
exists x ∈ V with ‖x + U‖ = ρ > 0. We only have access to x and U , so the only thing we
can do is take linear combinations of x and things in U . Since U is invariant under dilation,
all things are of the form

v =
x− u
λ

.

If we want ‖v‖ = 1, we must have λ = ‖x− u‖ ≥ ρ > 0. We also want ‖(x− u)λ−1 + U‖ =
λ−1‖x + U‖ = λ−1ρ ≥ 1 − ε. The only way this can happen is if λ ≤ ρ(1 − ε)−1. Since
(1− ε)−1 > 1, there is enough room to find some u ∈ U with λ = |x− u| ≤ (1− ε)−1ρ.

Proof of Corollary 2.5. Let v1 ∈ V , ‖v1‖ = 1, and set V1 = span(v1). Then V1 is finite-
dimensional, and thus closed, and so there exists v2 ∈ V , ‖v2‖ = 1 and ‖v2 + V1‖ ≥ 1/2. Set
V2 = span(v1, v2). Then we can find v3 ∈ V with ‖v3‖ = 1 and ‖v3 + V2‖ ≥ 1/2. Continue
in this fashion to define vn. Then if n < m ‖vn − vm‖ ≥ ‖vm + Vn‖ ≥ 1/2.

Lemma 2.6. Suppose V is a Banach space. If V ′ is finite-dimensional, so is V .

Proof. If V were reflexive, we’d be done since it is clear that V ′′ ∼= V is finite-dimensional.
The theorem is important since it is true even without this assumption.

Suppose V were infinite-dimensional. Let {v1, v2, v3, . . .} be an infinite linearly-independent
set, and set Vi = span(v1, . . . , vi). Define a functional ψi : Vi → C by ψi(vj) = δij. Since
Vi is finite-dimensional, ψi is bounded and so extends by the Hahn-Banach theorem to a
functional ψi ∈ V ′. Now the collection of the ψi are linearly independent. Indeed, if

a1ψ1 + · · ·+ anψn = 0,

then we may plug in vi, 1 ≤ i ≤ n to see that all ai = 0. This contradicts that V ′ is
finite-dimensional.

Remark 2.7. The lemma is still true, with a similar proof, if one merely assumes that V is
a Hausdorff locally-convex vector space. The lemma is not true in general, even with the
assumption of Hausdorff. For example, the space L1/2([0, 1]) = {measurable f : [0, 1] →
C :

∫ 1

0
|f |1/2 < ∞} endowed with the metric d(f, g) =

∫ 1

0
|f − g|1/2 is certainly infinite

dimensional (and is also a complete metric space, so is in particular Hausdorff), but its dual
is the trivial vector space.

Lemma 2.8. Suppose V is a Banach space, and U ⊆ V is a closed subspace. Let W be
any normed vector space. Then there is an isometry between the space of bounded operators
T : V → W which vanish on U and the space of bounded operators T : V/U → W (where we
give the domain the quotient norm) defined by sending T : V → W vanishing on U to

T : V/U → W

defined by T (v + U) = T (v).
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Proof. If T : V → W vanishes on U , then T is clearly well-defined. We will show that if T is
bounded, then so is T . In fact we will show that the assingment T 7→ T is norm-decreasing.
Given v + U ∈ V/U , we may pick vn ∈ v + U so that ‖vn‖ → ‖v + U‖. Also for all n,

‖T (v + U)‖ = ‖T (vn + U)‖ = ‖T (vn)‖ ≤ ‖T‖‖vn‖.

Taking limits shows that ‖T (v + U)‖ ≤ ‖T‖‖v + U‖.
Conversely, if T : V/U → W is bounded, we may define T (v) = T (v + U). This turns

T into a map V → W which vanishes on U . We now show that T is bounded and the map
T 7→ T is norm-decreasing. Indeed,

‖T (v)‖ = ‖T (v + U)‖ ≤ ‖T‖‖v + U‖ ≤ ‖T‖‖v‖.

It is clear that the above assignments are inverses of each other. Since both assignments
are norm-decreasing, it follows that they are both in fact isometries.

Lemma 2.9. Suppose V is a Banach space. If X ⊆ V satisfies

(i) X ⊆ V is finite-dimensional, or

(ii) X ⊆ V is closed and V/X is finite-dimensional

then there exists a complementary subspace Y ⊆ V closed with V = X + Y and X ∩ Y = 0,
and the projections PX and PY are well-defined and bounded. Furthrmore, in the case of (ii),
dimY = dimV/X. Here the projections PX are defined by PX(x+ y) = x where x+ y is the
unique such decomposition of an element in V , and similarly for PY .

Proof. To show the existence of Y and the boundedness of the projections, it suffices to find
a bounded operator PX : V → X which is the identity on X. Indeed, we will show that we
can take Y = kerPX .

For any v ∈ V , v = PXv + (1 − PX)v. The first term is in X. Since PX is the identity
on X, P 2

X = PX ,and so the second term is in kerPX = Y . This shows that X + Y = V . If
v ∈ X ∩ kerPX , then v = PXv = 0, so X ∩ kerPX = 0. By definition, v = PXv + (1− PX)v,
so PX is the projection onto X, and is bounded by assumption. Since PY = 1 − PX , it is
also bounded.

We now show the existence of PX in the case of (i) and (ii). Suppose X ⊆ V is finite-
dimensional, and pick a basis x1, . . . , xn of X. Then any x ∈ X has a unique representation

x =
∑

aixi,

for some ai ∈ C. The assignment x 7→ ai is actually a linear functional on X,which we
henceforth denote by ai(x). Since dimX <∞, ai is bounded. Thus ai extends to a bounded
functional on all of V . This lets us define a bounded PX : V → X by

PX(v) =
∑

ai(v)xi,
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which is by definition the identity on X.
Now suppose X ⊆ V is closed and dimV/X is finite. Pick vi ∈ V so that the collection

{vi+X} form a basis of V/X. Since V/X is finite-dimensional, it is isomorphic (but perhaps
not isometric) as a Banach space to Cd for some d <∞, where we put the sup norm on Cd,
with the isomorphism taking

a1(v1 +X) + · · · ad(vd +X) 7→ (a1, . . . , ad).

Similar to the proof in Lemma 2.1, we define a map

T : Cd ⊕X → V

by
(a1, . . . , ad, x) 7→ a1v1 + · · · advd + x.

It is clear (like in the proof of Lemma 2.1) that this map is surjective, injective, and bounded.
Likewise, since X is a closed subspace of a Banach space, it is a Banach space itself, and
thus Cd ⊕ X is a Banach space under any obvious norm. The image of 0 ⊕ X under T is
clearly just X ⊆ V itself. Let P : Cd⊕X → 0⊕X be the projection onto the second factor,
which is bounded. Define the bounded operator PX = TPT−1 : V → V , which certainly
maps V into X, and is the identity on X.

Thus we have shown in both cases (i) and (ii) the existence of the complementary subspace
Y and the boundedness of the projections. In the case of (ii), we need to show that dimY =
dimV/X.

It is clear that kerPY = X. By Lemma 2.8, PY : V → Y descends to a map PY : V/X →
Y , which is surjective. It is injective, for if 0 = PY (v+X) = PY v, then v ∈ kerPY = X, and
so v +X = 0. Thus PY is a linear isomorphism, and dimY = dimV/X.
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